Expansion Vessels

for heating systems

altecnic

Expansion Vessels for heating systems

Introduction

Altecnic offer a complete range of expansion vessels to meet the requirements of most heating systems.

Expansion vessels for heating systems are manufactured to meet the requirements of PED 97/23/EC Directive and BS EN 13831:2007 'Closed expansion vessels with built in diaphragm for installation in water'.

Design

The vessel is fabricated by welding the various sections together which results in a very reliable structure suitable for internal pressures up to 6 bar.

Epoxy coated in red.

Suitable for temperatures up to 99°C, resistant to ethylene or propylene glycol mixtures and has low gas permeability.

Altecnic expansion vessels are all tested according to the Pressure Systems Directive.

How It Works

In a closed heating system water cannot be compressed so any increase in volume, created by an increase in temperature, has to be accommodated by an expansion vessel.

When water is cold, the pre-charge pressure forces the diaphragm against the tank towards the inlet.

As the temperature increases, the expanded water volume pushes against the diaphragm creating additional volume for the water to enter.

When the temperature decreases, the pre-charge pressure forces the water from the tank and back into the main heating system.

This maintains a constant pressure within the heating system helping to reduce energy consumption.

Materials

Component		Material
Shell		Carbon Steel
Connections		Carbon Steel
Diaphragm		SBR synthetic rubber
Coating		Powder Epoxy
Technical Specification		
Max. working pressure	4 to 8 litres	5 bar

Max. Working pressure	4 10 0 111185	5 Dai
	12 to 50 litres	4 bar
	80 to 700 litres	6 bar
Max. operating temperature		-10°C to 99°C
Factory air pre-charge	4 to 8 litres	1.5 bar
	12 to 50 litres	2.0 bar
	80 to 700 litres	2.5 bar

Dimensions

Prod Code	Capacity	ØD	н	E	С	
	litres		mm	mm	Connection	
ZI-301004	4	225	195	n/a	G¾"	
ZI-301008	8	220	295	n/a	G¾"	
ZI-301012	12	294	281	n/a	G¾"	
ZI-301018	18	290	400	n/a	G¾"	
ZI-301024	24	24 324		n/a	G¾"	
ZI-302035.CP	35	404	387	119	G¾"	
ZI-302050.CP	50	407	507	157	G¾"	
ZI-302080	80	450	608	150	G¾"	
ZI-302105	105	500	665	165	G¾"	
ZI-302150	150	500	897	216	G¾"	
ZI-302200	200	600	812	225	G¾"	
ZI-302250	250	630	957	245	G¾"	
ZI-302300	300	630	1105	245	G¾"	
ZI-302400	400	630	1450	245	G¾"	
ZI-302500	500	750	1340	290	G1"	
ZI-302600	600	750	1555	290	G1"	
ZI-302750	700	750	1755	290	G1"	

80 to 400 litres

35 to 50 litres

500 to 700 litres

Expansion Vessels for heating systems

Sizing Chart

Maximum working t	emperature - °C		40	50	60	70	80	90	99
Coefficient of water	expansion related to	10°C	0.008	0.012	0.017	0.022	0.029	0.036	0.043
Pre-charge	System Pressure	System Water Volume	Approxim	nate volume	in (litres) as	a function	of the max	. working te	mperature
bar	bar	litre							
0.5	1	100	3	4.7	6.7	9	11.5	14.3	17.3
0.5	1.5	100	1.9	3	4.2	5.6	7.2	8.9	10.8
0.5	2	100	1.5	2.4	3.4	4.5	5.7	7.1	8.6
0.5	2.5	100	1.3	2.1	2.9	3.9	5	6.2	7.6
1	1.5	300	11.4	17.7	25.2	33.7	43.1	53.5	64.8
1	2	300	6.8	10.6	15.1	20.2	25.9	32.1	38.9
1	2.5	300	5.3	8.3	11.8	15.7	20.1	25	30.2
1	3	300	4.5	7.1	10.1	13.5	17.2	21.4	25.9
1.5	2.5	500	13.2	20.7	29.4	39.3	50.3	62.4	75.6
1.5	3	500	10.1	15.8	22.4	29.9	38.3	47.5	57.6
1.5	3.5	500	8.5	13.3	18.9	25.2	32.3	40.1	48.6
1.5	4	500	7.6	11.8	16.8	22.4	28.7	35.7	43.2
2	3	1000	30.3	47.3	67.2	89.8	115	142.6	172.7
2	4	1000	18.9	29.5	42	56.1	71.9	89.1	108
2	5	1000	15.1	23.6	33.6	44.9	57.5	71.3	86.4
2	6	1000	13.2	20.7	29.2	39.3	50.3	62.4	75.6

Sizing formula

 $V = e C / [1 - ((P_{prec} + 1) / (P_{max} + 1))]$

where V = Volume of the vessel in litres

e = Coefficient of water expansion

C = System water volume in litres

 P_{max} =System pressure bar

P_{prec} =Pre-charge pressure bar

Typical Application

Attention: The calculation gives only an approximation of the volume needed for the expansion vessel. The system designer needs to confirm the above using details of the heating system and the fluid to be used.

The maximum working pressure of the expansion vessel must be at least equal to the maximum system pressure (pressure setting of the safety valve.

- A drain
- B safety valve
- C automatic air vent
- D isolating valve
- E non return valve
- F pressure gauge
- G pump
- H heating circuit
- I mixing valve
- J expansion vessel
- K boiler

E & O.E

Altecnic Ltd Mustang Drive, Stafford, Staffordshire ST16 1GW T: +44 (0)1785 218200 E: sales@altecnic.co.uk Registered in England No: 2095101

altecnic